402796 CATALOGE WESTI # 402 796 ## Correlation of the Thermal Component of the Yield Stress of Body Centered Cubic Metals 1 MARCH 1963 Prepared by H. CONRAD and W. HAYES Materials Sciences Laboratory Prepared for COMMANDER SPACE SYSTEMS DIVISION UNITED STATES AIR FORCE Inglewood, California LABORATORIES DIVISION • AEROSPACE CORPORATION CONTRACT NO. AF 04(695)-169 0 ### CORRELATION OF THE THERMAL COMPONENT OF THE YIELD STRESS OF BODY CENTERED CUBIC METALS Prepared by H. Conrad and W. Hayes Materials Sciences Laboratory AEROSPACE CORPORATION El Segundo, California Contract No. AF 04(695)-169 1 March 1963 Prepared for COMMANDER SPACE SYSTEMS DIVISION UNITED STATES AIR FORCE Inglewood, California #### **ABSTRACT** The variation of the thermal component of the yield stress, τ^* , with temperature for the Groups VA and VIA body centered cubic transition metals has been determined from data reported in the literature. It was found that the temperature dependence of τ^* is relatively independent of structure for a purity of < 99.98% by weight, but may decrease for higher purity material and for single crystals as compared to polycrystals, in agreement with what had previously been found for iron. By plotting τ^* versus the parameter $(T-T_0)/T_m$, it was possible to correlate the data for all the b.c.c. transition metals. T is the test temperature, T_0 the temperature where τ^* is first zero, and T_m the melting temperature. The present results support thermally-activated overcoming of the Peierls-Nabarro stress as the mechanism responsible for the strong temperature dependence of the yield stress in the b.c.c. metals. 0 #### CONTENTS | | ABSTRACT | iii | |---|---|-----| | | INTRODUCTION | 1 | | | CORRELATION OF THE THERMAL COMPONENT | 7 | | | REFERENCES | 23 | | | FIGURES | | | 1 | Effect of Temperature on the Proportional Limit, Yield Stress and Stress After Strain of 0.06 for Molybdenum in Compression | 4 | | 2 | Effect of Temperature on the Lower Yield Stress of Iron and Several Steels in Tension | 5 | | 3 | Effect of Temperature on the Lower Yield Stress, σ_{LY} , the Frictional Stress, σ_{00} , and the Flow Stress, σ_{fl} of Iron in Tension | 6 | | 4 | Summary of Data on the Effect of Temperature on the Thermal Component of the Yield Stress of Iron | 10 | | 5 | Effect of Temperature on the Thermal Component of the Yield Stress of Vanadium | 11 | | 6 | Effect of Temperature on the Thermal Component of the Yield Stress of Columbium | 12 | | 7 | Effect of Temperature on the Thermal Component of the Yield Stress of Tantalum | 13 | O #### FIGURES (Continued) | 8 | Effect of Temperature on the Thermal Component of the Yield Stress of Chromium | 14 | |----|--|----| | 9 | Effect of Temperature on the Thermal Component of the Yield Stress of Molybdenum | 15 | | 10 | Effect of Temperature on the Thermal Component of the Yield Stress of Tungsten | 16 | | 11 | Correlation of the Thermal Component of the Yield Stress, τ^* , with the Parameter $(T - T_0)/T_m$, for the B.C.C. Transition Metals | 17 | | 12 | Variation of T with Melting Temperature, T _m , for the B.C.C. Transition Metals | 18 | | | TABLES | | | 1 | Information Pertaining to Fig. 5 through Fig. 10 | 19 | | 2 | To and Tm for B. C. C. Transition Metals | 22 | #### INTRODUCTION A correlation has been established for the thermal component of the yield stress of the body centered cubic transition metals in Groups VA and VIA of the Periodic Table. The study which resulted in this correlation was an outgrowth of a previous analysis of data published by various investigators on the effects of temperature on yielding and flow of body centered cubic metals (b. c. c.), Ref. 1. In the original study, it was pointed out that a number of investigators had attributed the temperature dependence (or thermal component) of the lower yield stress (σ_{LY}) of b.c.c. metals to the tearing of dislocations from their atmosphere of interstitial atoms (Ref. 2 and 3). However, strong temperature dependence had also been observed for the proportional limit (σ_P) and the flow stress (σ_{ϵ}), measured at a strain beyond the Luders strain, as shown in Fig. 1. The lattice friction stress (σ_{00}) in iron was also known to depend strongly on temperature (Ref. 4). In addition, the temperature dependence of the reversible flow stress (σ_{fl}) for strained electrolytic iron had been found to be independent of strain (Ref. 5). It was concluded from these facts that the proportional limit, lower yield stress, and subsequent plastic flow in b.c.c. metals are controlled by the same mechanism. Additional data on iron revealed that the purity and crystalline form (i. e., single crystal or polycrystal) also affect the temperature dependence of the yield stress. By plotting the difference between the yield stress at test temperature, T, and that at 300°K versus the test temperature, the temperature independent component of the stress was removed. The data points, plotted in this manner, fell into two scatter bands. One of the bands (termed Band A) had a strong temperature dependence and the other, Band B, had a somewhat weaker temperature dependence (though still greater than that generally observed for face centered cubic and close packed hexagonal metals). Band A represents all data points of polycrystalline materials of low purity (i. e., where C + N > 0.01% by wt), and Band B represents the data points of high-purity polycrystals (where C + N < 0.01% by wt) and high and low purity single crystals. The results are shown in Fig. 2. The effect of interstitial content and grain boundaries on the temperature dependence of the yield stress was further examined by plotting the difference between the yield stress of iron at 78°K and 300°K versus the impurity content of carbon plus nitrogen. The results showed that the temperature dependence of the yield stress for polycrystalline iron is greatly dependent on the interstitial content up to ~0.015% by weight, whereas, single crystals exhibited only slight dependence. Above 0.015% by weight, no additional effect was observed. Thus, it was concluded that the strong temperature dependence of the lower yield stress is associated with the combined effect of interstitial impurities and grain boundaries. A lower temperature dependence results if either is missing. A graphical comparison was prepared on the effect of temperature on: 1) the lower yield stress (σ_{LY}) from Fig. 2; 2) the lattice friction stress (σ_{00}) in material with a C + N content of 0.16% from Ref. 4; and 3) the reversible flow stress after a strain of 5% (σ_{fl}) for electrolytic iron with a C + N content of 0.017% from Ref. 5. It is seen in the comparison (Fig. 3) that the data points for σ_{00} and σ_{fl} fell (with one exception) into Band A. Since the values for σ_{00} were obtained by extrapolating σ_{0} to (C + N) in solution = 0%, it appears that the total impurity content governs the temperature dependence of σ_{00} , rather than the amount of impurity in solution. It will be noted in Fig. 3 that the value for σ_{00} at 77° K fell outside Band A. It was suggested that the occurrence may have been the result of twinning, which has been observed by a number of investigators at low temperatures (Ref. 6, 7, and 8). The amount in solution was only 0.005 to 0.025%. In conclusion, the initial study showed that: Û - 1) The proportional limit $(\sigma_{\mathbf{p}})$, the lattice friction stress (σ_{00}) , and the reversible flow stress (σ_{fl}) show a temperature dependence similar to that for the lower yield stress $(\sigma_{f,\mathbf{v}})$. - 2) The temperature dependence of the flow parameters (σ_{LY} , σ_{fl} , and σ_{00}) in polycrystalline iron is determined by the total interstitial content, rather than by the amount of impurity in solution. - 3) In iron, the presence of both grain boundaries and interstitial impurities is required to give the very strong temperature dependence of the stress normally attributed to b. c. c. metals. The results of the initial analysis prompted further research to establish a correlation between reported values for the thermal component, or temperature dependence, of the yield stress of all body centered cubic transition metals in Groups VA and VIA of the Periodic Table. Fig. 1. Effect of Temperature on the Proportional Limit, Yield Stress and Stress After Strain of 0.06 for Molybdenum in Compression O Fig. 2. Effect of Temperature on the Lower Yield Stress of Iron and Several Steels in Tension Fig. 3. Effect of Temperature on the Lower Yield Stress, σ_{LY} , the Frictional Stress, σ_{00} , and the Flow Stress, σ_{fl} , of Iron in Tension #### CORRELATION OF THE THERMAL COMPONENT Figure 4 summarizes the results of the original investigation of iron which formed the basis for the subsequent work in establishing a correlation between the thermal components of the yield stress. The temperature independent component of the yield stress has been removed from consideration in Fig. 4 by plotting the difference between the yield stress at temperature T and that at 300°K versus the test temperature. The stresses plotted in Fig. 4 through 12 are shear stresses (i. e., one-half of the tensile stress for polycrystalline specimens and the critical resolved shear stress for single crystals). The thermal component of the yield stress for the b.c.c. transition metals of Groups VA and VIA behaves in a manner similar to that observed for iron, as shown in Fig. 5 through 10. (Supplemental information pertaining to the figures is presented in Table 1.) The similarity in behavior between the b.c.c. transition metals and iron suggests that the temperature dependence of the yield stress of all of the b.c.c. transition metals can be correlated through a parameter such as the melting temperature. Previous attempts at such a correlation have not been completely successful; in fact, they suggest a difference in behavior between the Group VA and Group VIA metals (Ref. 24 and 25). However, in Fig. 11, it is seen that a reasonable correlation exists between all of the b.c.c. transition metals of low purity (<99.98% by wt) when the thermal component of the yield stress ($\tau^* = \tau - \tau_{\mu}$) is plotted versus the parameter (T - T₀)/T_m, where: τ = the applied shear stress taken as one-half of the tensile stress. Data for zone-refined iron at 4.2°K from Ref. 16 are not included in the figure due to the occurrence of twinning at that temperature. In view of this and other considerations (Ref. 22 and 23), the yield stress for single crystals and high-purity polycrystals (>99.995% by wt) of iron is considered to follow the dashed curve of Fig. 4, rather than as indicated in the initial study. τ_μ = the long-range internal stress which is dependent on the structure and proportional to the shear modulus (μ), T = the test temperature, T_{o} = the temperature at which τ first becomes equal to τ_{u} , $T_m =$ the melting temperature. The data points of Fig. 11 were taken from the solid curves of Fig. 4 through 10. T_0 was derived as follows. When τ^* is zero, then $$\tau = \tau_{\perp} = \alpha \mu \tag{1}$$ where α is a constant. Differentiating Eq. (1) and substituting for α , one obtains $$\frac{d\tau}{dT} = \frac{\tau}{\mu} \frac{d\mu}{dT} \tag{2}$$ In the temperature range where the plots of τ^* versus temperature are relatively flat, one finds that $$\frac{1}{\mu} \frac{d\mu}{dT} = 1.5 \text{ to } 3.5 \times 10^{-4} \text{ per } {}^{\circ}\text{K}$$ (3) for the various b.c.c. metals. † Further, since the yield stress in this range is approximately 10 to 20 kg/mm², one obtains from Eq. (2) $$\frac{d\tau}{dT} \approx 5 \times 10^{-3} \text{ kg/mm}^2/^{\circ} \text{K} , \qquad (4)$$ The variation of modulus with temperature was taken from Ref. 26 and 27. when $\tau^* \simeq 0$. T_0 is then obtained by extrapolating plots of $\log\left(\frac{d\tau}{dT}\right)$ versus temperature to a value of $5 \times 10^{-3} \text{ kg/mm}^2/^{0}\text{K}$. (Refer to Fig. 12.) The value for d_T was obtained by graphical differentiation of the curves in Fig. 4 through 10 The values of T_o (to the nearest 50°K) derived in this manner are given in Table 2. It is estimated that the values are accurate to within 10%. In Fig. 13, it is seen that T_0 is approximately proportional to the melting temperature (i.e., $T_0 \approx 0.22 \ T_m$). This agrees with previous observations (Ref. 25 and 28) that the yield stress of the b.c.c. metals shows a relatively temperature-independent region above 0.20 to 0.25 T_m . The fact that the thermal component of the yield stress correlates in this manner suggests that the same dislocation mechanism is rate-controlling in the b.c.c. metals. Furthermore, since the thermal component is independent of structure, one can conclude that this mechanism is overcoming the Peierls-Nabarro stress, i.e., overcoming the inherent resistance of the b.c.c. lattice. The decrease in stress noted for vanadium, columbium, and tantalum, following the region of relatively constant stress, probably represents the migration of interstitials along with the dislocations. Fig. 4. Summary of Data on the Effect of Temperature on the Thermal Component of the Yield Stress of Iron Fig. 5. Effect of Temperature on the Thermal Component of the Yield Stress of Vanadium Fig. 6. Effect of Temperature on the Thermal Component of the Yield Stress of Columbium Fig. 7. Effect of Temperature on the Thermal Component of the Yield Stress of Tantalum U Fig. 8. Effect of Temperature on the Thermal Component of the Yield Stress of Chromium Fig. 9. Effect of Temperature on the Thermal Component of the Yield Stress of Molybdenum Fig. 10. Effect of Temperature on the Thermal Component of the Yield Stress of Tungsten Fig. 11. Correlation of the Thermal Component of the Yield Stress, τ^* , with the Parameter (T - T₀/T_m, for the B, C, C, Transition Metals U Fig. 12. Variation of T with Melting Temperature, T_m, for the B. C. C. Transition Metals Table 1. Information Pertaining to Fig. 5 through Fig. 10 0 C | | 4 | ,,, | | Interstitial
Content, % by | titial
% by wt | t t | Grain Size, | Strain | Ty o | Stress | 7300. d | | |----------------|--|--------|-----------|-------------------------------|-------------------|----------|--------------------|------------------------|----------|---------------------|---------|----------| | | | | ပ | 0 | z | н | | sec-1 | Test | Plotted | | | | М | Cal-Red-A. M. Rod | 62 | . 047 | 070. | 250. | . 0043 | .1 to .2 | 5 × 10-4 | T | + (0.2%) | 19.5 | | | DIG | Cal-Red-A. M. Rod | 30 | 80. | . 02 | - 00 | 900. | 2. | 1 × 10-4 | H | + (0.2%) | 7.8 | | | Y N | lodine Bar-A.M. Rod | 8 | . 024 | .01 | .005 | 100. | 07 . | 1 × 10-4 | ۲ | T (0. 2%) | 4.5 | | | V A | A. M. Sheet | 31 | 60. | .057 | . 07 | . 0004 | .03 | 15 × 10-4 | ⊬ | T (0. 2%) | 18.4 | | | | E. B. wire | 32 | 0.00 | .010 | . os | . 02 | .048 to 1.414 | 2 × 10-4 | H | τ ₁ (LY) | 7.0 | <u> </u> | | | Murex wire | 33 | ı | .05 | <. 01 | ì | 9. 01 8 10. | 4 × 10-4 | T | 7,(LY) | 89 | | | | High-purity Sheet | 34 | 10. | . 01 | ı | ı | . 014 | .7 × 10-4 | ۲ | *LY | 8.1 | - | | מ מ | Murex P. M. Rod | 35 | .0 | . 034 | . 014 | . 0014 | . 0014 .037 to.138 | 3 × 10-4 | ۲ | T _i (YS) | 9.0 | | | RI | E. B. Rod | 36 | . 021 | .010 | 600 . | . 0008 | . 045 | .8 × 10-4 | H | + (. 2%) | 7.5 | | | חמי | A. M. Rod | 36 | .03 | . 040 | 20 . | <. 001 | 5 20. | . 8 × 10 ⁻⁴ | H | T (. 2%) | 12.0 | | | 100 | P. M. wire | 37 | - | ı | ı | 1 | .064 to 3.2 | 2 × 10-4 | Ŧ | † (P) | 3.0 | | |) | P. M. Rod | 38 | .011 | . 021 | . 012 | 1 | . 25 | 10 × 10-4 | H | T (. 01 %) | 9.7 | | | | E. B. Rod | 39 | . 018 | . 020 | .01 | . 0001 | 60 . | 1 × 10-4 | υ | T (. 05%) | 8.5 | | | a
E | ^a E. B. = electron beam melted; P. M. = powder metallurgy; A. M. = arc melted. | melte | d; P. M. | = powc | ler met | allurgy: | A. M. = arc r | nelted. | | | | | | P _T | bT = tension; C = compression. | ressio | 'n. | | | | | | | | | | | ۍ
- | Ct. = extrapolated stress to infinite grain size; LY = lower vield stress; P = proportional limit; | a to i | nfinite g | rain sig | ie: LY = | lower v | rield stress;] | P = proport | il lano) | mit: | | | τ_i = extrapolated stress to infinite grain size: LY = lower yie CRSS = critical resolved shear stress; YS = yield stress. $d_{7300} = stress$ at 300° K. Table 1. Information Pertaining to Fig. 5 through Fig. 10 (Continued) | | | | | Interstitial | Interstitial | • | Grain Size | Strain | Type | 1 | 7300 d | |----------------|--|--------|-----------|-----------------------|-----------------------|-----------|-------------------|----------------------------|-------------------------|----------------------|--------------------| | | Material | Ref. | υ | 0 | Z | н | шш | Rate,
sec ⁻¹ | of
Test ^b | Plotted ^c | kg/mm ² | | | E.B. Rod | 40 | . 005 | . 0082 | . 0063 | 2000. | . 019 889 | 10×10-4 | 1 | τ _i (LΥ) | 10.8 | | | P. M. Rod | 41 | . 0014 | 800 . | 900 . | 1 | .047 | 3×10-4 | H | TLY | 14.0 | | ML | E.B. Rod | 45 | .001 | . 001 | . 001 <. 003 <. 001 | <. 001 | single | 3×10-5 | υ | CRSS | 7.3 | | ידו | | | | | | | crystal | | | | | | A1 . | National Res. wire | 42 | . 0035 | . 0012 | . 0012 | , | . 035 111 | 1 | H | 7; (LY) | 8.2 | | NΑ | National Res. wire | 42 | 8000. | 0010 | . 0014 | ł | .034 345 | ı | H | Ti (LY) | 10.1 | | J. | National Res. wire | 42 | . 0003 | . 0012 | 9600. | ı | .011056 | ı | H | T _i (LY) | 9.9 | | | P. M. Sheet | 43 | . 02 | 9500. | .013 | ı | .037 | 15×10-4 | F | T (0.2%) | 20.2 | | | E. B. Sheet | 44 | ٠ | . 0016 | 0100. | . 0001 | . 04 06 | 8×10-4 | T | TLX | 8.3 | | СНВОМІПМ | | 46 | | <. 0200 | 0900. | 800c · | 960 | 0.8×10-4 | υ | TLY | 12.3 | | MUN | P. M. Rod | 6 | . 007 | . 002 | . 012 | 1 | . 032 | 3×10 ⁻⁴ | υ | 7 (.01%) | 18.2 | | E C | P. M. Rod | 47 | . 014 | . 0017 | 9500. | , | . 030 | 3×10-4 | H | <u>ተ</u> | 16.8 | | RBI | A. M. Rod | 48 | . 0054 | 6200. | . 0012 | 1 | .035 | 3×10-4 | H | TLX | 10.9 | | МОГ | A. M. Wire | 49 | . 04 | <. 003 | • | • | . 018 | 7×10-4 | ۴ | ¹LY | 21. 9 | | A
Fi | ^a E. B. = electron beam melted; P. M. = powder metallurgy; A. M. | nelted | . P. M. | = powde | r metal | lurgy: A. | .M. = arc melted. | elted. | | | | | ρŢ | ^{b}T = tension; C = compression. | ession | .• | | | | | | | | | | CR. | c_{T_i} = extrapolated stress to infinite grain size; LY = lower yield stress; P = proportional limit; CRSS = critical resolved shear stress; YS = yield stress. | to inf | inite gra | in size:
; YS = yi | LY = lo | ower yie | ld stress; P | = proportion | imil len | IJ | | | م ^ل | d_{T300} = stress at $300^{\rm O}$ K. | | | | | | | | | | | Table 1. Information Pertaining to Fig. 5 through Fig. 10 (Continued) 0 O | | Materia] ^a | Ref. | | Inter
Content | Interstitial
Content, % by wt | ¥ | Grain Size, | Strain
Rate | Type | Type Stress c | T300, d | |--------|---|---------|--------|------------------|--------------------------------------|--------------------------------|-------------------|----------------|------|---------------|---------| | ١ | | | υ | 0 | Z | н | | sec-1 | Test | Libered | 7 minu | | M | E.B. Rod (16 passes) | 52 | | <. 0001 | <. 0001 | . 0013 <. 0001 <. 0001 <. 0001 | 0.1 - 0.5 | 3×10-4 | T | + (0.05%) | 12.3 | | END | 뗘 | 52 | | <. 0001 | . 0013 <. 0001 <. 0001 <. 0001 | <. 0001 | single
crystal | 3×10-4 | ۲ | + (0.05%) | 14.0 | | d a Y. | E.B. Rod
(6 passes) | 25 | . 0013 | <, 0001 | . 0013 <. 0001 <. 0001 <. 0001 | <, 0001 | single
crystal | 3×10-4 | H | т (0.05%) | 9.1 | | ION | A. M. Rod | 90 | .05 | . 003 | 100. | . 0003 | . 045 | 30×10-4 | H | T (0.2%) | 22.9 | | y | A. M. Rod | 51 | 910. | . 007 | .0185 | ₹000 | 920. | 9×10-4 | H | F." | 5.3 | | | P. M. Rod | 54 | . O. | , | 800. | , | | 3×10-4 | 7 | T (0.2%) | | | ЕИ | P. M. Rod | 53 | 20. | ı | 800. | i | 920 . | 3×10-4 | H | T (0.2%) | ı | | TS | P. M. Rod | 55 | .01 | . 0131 | . 003 | 1000. | . 045 | 3×10-4 | ۲ | 7 (0.2%) | ı | | ואכ | P. M. Rod | 56 | .007 | . 004 | . 003 | . 0002 | 1 | 1×10-4 | H | T (0. 2%) | ı | | JT | A. M. Extruded
and Swaged | 99 | ī. | . 004 | . 004 <. 001 | . 0001 | ı | 3×10-4 | H | T (0.2%) | ı | | | | | | | | | | | | | | | a
E | ² E. B. = electron beam melted: P. M. = nouder matellisees: A. M. = and melted | a le ad | 200 | 1 | | | | | | | | E.B. = electron beam melted; P. M. = powder metallurgy; A. M. = arc melted. ^bT = tension; C = compression. c_{T_1} = extrapolated stress to infinite grain size; LY = lower yield stress; P = proportional limit; CRSS = critical resolved shear stress; YS = yield stress. d-300 = stress at 300°K. Table 2. T_o and T_m for B. C. C. Transition Metals T_o = temperature where $\frac{d\tau}{dT}$ is $5 \times 10^{-3} \text{ kg/mm}^2/^0 \text{K}$ and T_m = melting temperature | Metal | т _m , °к | т _о , ^о к | |------------|---------------------|---------------------------------| | Vanadium | 2173 | 450 | | Niobium | 2741 | 500 | | Tantalum | 3269 | 600 | | Chromium | 2148 | 500 | | Molybdenum | 2883 | 650 | | Tungsten | 3683 | 950 | | Iron | 1810 | 350 | #### REFERENCES - 1. Conrad, H., "Effect of Temperature on Yield and Flow Stress of B.C.C. Metals," Phil. Mag. 5, 745 (1960). - 2. Cottrell, A. H., and B. A. Bilby, "Dislocation Theory of Yielding and Strain Aging of Iron," <u>Proc. Phys. Soc.</u> (London) A. 62, 49 (1949). - 3. Fisher, J.C., "Application of Cottrell's Theory of Yielding to Delayed Yield in Steel," <u>Trans. Am. Soc. Metals 47</u>, 451 (1955). - 4. Heslop, J., and N.J. Petch, "The Stress to Move a Free Dislocation in Alpha Iron," Phil. Mag. 1, 866 (1956). - 5. Conrad, H., and G. Schoeck, "Cottrell Locking and the Flow Stress in Iron," Acta Met. 8, 791 (1960). - 6. Deronja, F.S., and M. Gensamer, "Some Low Temperature Observations of 1020 Steel," Trans. Am. Soc. Metals 51, 667 (1959). - 7. Hahn, G. T., B. L. Averbach, W. S. Owen, and M. Cohen, "Micromechanism of Brittle Fracture in Low-Carbon Steel," Fracture (John Wiley and Sons, Inc., New York, 1959). - 8. Owen, W.S., M. Cohen, and B.L. Averbach, "Some Aspects of Preyield Phenomena in Mild Steel at Low Temperatures," Trans. Am. Soc. Metals 50, 517 (1958). - 9. Alers, G., R.W. Armstrong, and J.H. Bechtold, "Plastic Flow of Molybdenum at Low Temperature," Trans. AIME 212, 523 (1958). - 10. Geil, G. W., and N. L. Carwile, "Tensile Properties of Ingot Iron at Low Temperatures," J. Research Nat. Bur. Standards 45, 129 (1950). - 11. McAdam, D. J., and R. W. Mebs, "The Technical Cohesive Strength and Other Mechanical Properties of Metals at Low Temperatures," Proc. Am. Soc. Testing Materials 32, 661 (1943). - 12. Olleman, R., Ph. D. Thesis, University of Pittsburgh (1955). - 13. Wessel, E. T., "Tensile Study of the Brittle Behavior of a Rimmed Structural Steel," Proc. Am. Soc. Testing Materials 56, 540 (1956). - 14. Wessel, E. T., "The Tensile Properties of Metals at Very Low Temperatures," <u>Trans. Am. Soc. Metals</u> 49, 149 (1957). - 15. Wiener, G. W. (unpublished research, Westinghouse Research Laboratories). - 16. Smith, R. L., and J. L. Rutherford, "Tensile Properties of Zone-Refined Iron in the Temperature Range from 298° to 4.2°K," Trans. AIME 209, 857 (1957). - 17. Allen, N.P., B.E. Hopkins, and J.E. McLennan, "The Tensile Properties of Single Crystals of High-Purity Iron at Temperatures from 100 to -253°C," Proc. Roy. Soc., (London) 234, 221 (1956). #### REFERENCES (Continued) - 18. Cox, J.J., G.T. Horne, and R.F. Mehl, "Slip, Twinning, and Fracture in Single Crystals of Iron," Trans. Am. Soc. Metals 49, 118 (1957). - 19. Paxton, H. W., and A. T. Churchman, "Effect of Temperature and Composition on the Deformation of Single Crystals of Iron," Acta Met. 1, 473 (1953). - Vogel, F. L., and R. M. Brick, "Deformation of Ferrite Single Crystals," <u>Trans. AIME 197</u>, 700 (1953). - 21. Steijn, R.P., and R.M. Brick, "Flow and Fracture of Single Crystals of High-Purity Ferrites," Trans. Am. Soc. Metals 46, 1406 (1954). - 22. Conrad, H., "On the Mechanism of Yield and Flow in Iron," J. Iron Steel Inst. 198, 364 (1961). - 23. Conrad, H., "Yielding and Flow in Iron," Report TDR-169(3240-11) TN-2, Aerospace Corporation, El Segundo, California (7 March 1963) (Contract AF 04(695)-169); also, presented at AIME sponsored conference to be published in High Purity Iron and Its Dilute Solid Solutions (Interscience Publishers, Inc., New York). - 24. Bechtold, J. H., "Cleavage in the Refractory Metals," Fracture (John Wiley and Sons, Inc., New York, 1959), p. 628. - 25. Bechtold, J. H., "Mechanical Behavior of the Refractory Metals," Refractory Metals and Alloys AIME sponsored conference (Interscience Publishers, Inc., New York, 1961), p. 25. - 26. Tietz, T., and J. Wilson, "Mechanical, Oxidation, and Thermal Property Data for Seven Refractory Metals and Their Alloys," Report 2-36-61-1, Missiles and Space Div., Lockheed Aircraft Corp., California (15 September 1961). - 27. Koster, W., "Die Temperaturabhängigkeit des Elastizitätsmoduls Reiner Metalle," Z. Metallk. 39, 1 (1947). - Conrad, H., "Experimental Evaluation of Creep and Stress Rupture," Mechanical Behavior of Materials at Elevated Temperatures (McGraw-Hill Book Co., Inc., New York, 1961), p. 149. #### **VANADIUM** - Clough, W. R., and A. S. Pavlovic, "The Flow, Fracture, and Twinning of Commercially Pure Vanadium," Trans. Am. Soc. Metals 52, 948 (1960). - 30. Loomis, B. A., and O. N. Carlson, "Investigation of the Brittle-Ductile Transition in Vanadium," Reactive Metals (Interscience Publishers, Inc., New York, 1959), p. 227. #### REFERENCES (Continued) #### VANADIUM (Cont.) 31. Pugh, J. W., "Temperature Dependence of the Tensile Properties of Vanadium," Trans. AIME 209, 1243 (1957). #### COLUMBIUM - 32. Adams, M. A., A. C. Roberts, and R. E. Smallman, "Yield and Fracture in Polycrystalline Niobium," Acta Met. 8, 328 (1960). - 33. Churchman, A. T., "Cleavage Fracture in Niobium," J. Inst. Metals 88, 221 (1959-60). - 34. Dyson, B. F., R. B. Jones, and W. J. Mc G. Tegart, "The Tensile Properties of High-Purity Niobium at Low Temperatures," J. Inst. Metals 87, 340 (1958-59). - 35. Johnson, A. A., "The Low Temperature Tensile Properties of Niobium," Acta Met. 8, 737 (1960). 0 - 36. Mincher, A. L., and W. F. Sheely, "Effect of Structure and Purity on the Mechanical Properties of Columbium," <u>Trans. AIME</u>, 221, 19 (1961). - 37. Tankins, E. S., and R. Maddin, "Effect of Grain Size, Strain Rate, and Temperature on the Yield Strength of Columbium," Columbium Metallurgy (Interscience Publishers, Inc., New York, 1961), p. 343. - 38. Wessel, E. T., and D. D. Lawthers, "The Ductile-to-Brittle Transition in Niobium," The Technology of Columbium (John Wiley and Sons, Inc., New York, 1958), p. 66. - 39. Wessel, E. T., L. L. France, and R. T. Begley, "The Flow and Fracture Characteristics of Electron-Beam-Melted Columbium," Columbium Metallurgy (Interscience Publishers, Inc., New York, 1961), p. 459. #### **TANTALUM** - 40. Adams, M. A., and A. Iannucci, "The Mechanical Properties of Tantalum with Special Reference to the Ductile-Brittle Transition," ASD Tech. Report 61 (1 April 1961), p. 203. - 41. Bechtold, J. H., "Tensile Properties of Annealed Tantalum at Low Temperatures," Acta Met. 3, 249 (1955). - Owen, W. S. et al., "Yield Phenomena in Refractory Metals," Substructure and Mechanical Properties of Refractory Metals, WADD TR 61-181 (August 1961), p. 168. - Pugh, J. W., "Temperature Dependence of the Tensile Properties of Tantalum," Trans. Am. Soc. Metals 48, 677 (1956). #### REFERENCES (Continued) #### TANTALUM (Cont.) - 44. Schmidt, F. F., W. D. Klopp, D. J. Maykuth, H. R. Ogden, and R. I. Jaffee, "Investigation of the Properties of Tantalum and Its Alloys," WADD TR 61-106, Battelle Memorial Inst., Columbus, Ohio (March 1961). - 45. Mordike, B. L., "Herstellung von Tantal Einkristallen durch Electronstrahlschmelzen," Z. Metallk. 52, 587 (1961). #### **CHROMIUM** 46. Marcinkowski, M. J., and H. A. Lipsitt, "The Plastic Deformation of Chromium at Low Temperatures," Acta Met. 10, 95 (1962). #### MOLYBDENUM - 47. Bechtold, J. H., "Effects of Temperature on the Flow and Fracture Characteristics of Molybdenum," Trans. AIME 197, 1469 (1953). - 48. Brock, G. W., and G. M. Sinclair, T& AM Report 147, University of Illinois, Urbana, Illinois (February 1959). - 49. Carreker, R. P., and R. W. Guard, "Tensile Deformation of Molybdenum as a Function of Temperature and Strain Rate," Trans. AIME 206, 178 (1956). - 50. Pugh, J. W., "The Tensile Properties of Molybdenum at Elevated Temperatures," Trans. Am. Soc. Metals 47, 984 (1955). - 51. Wronski, A. S., and A. A. Johnson, "The Deformation and Fracture Properties of Polycrystalline Molybdenum," Phil. Mag. 7, 213 (1962). - 52. Lawley, A., J. Van den Sype, and R. Maddin, "Tensile Properties of Zone Refined Molybdenum in the Temperature Range 4.2°K to 373°K," J. Inst. Metals 91, 23 (1962). - 53. Bechtold, J. H., and P. G. Shewmon, "Flow and Fracture Characteristics of Annealed Tungsten," Trans. Am. Soc. Metals 46, 397 (1954). #### TUNGSTEN - 54. Bechtold, J. H., "Strain Rate Effects in Tungsten," Trans. AIME 206, 142 (1956). - Pugh, J. W., "Tensile and Creep Properties of Tungsten at Elevated Temperatures," Proc. Am. Soc. Testing Materials 57, 906 (1957). - 56. "Investigation of the Properties of Tungsten and Its Alloys," WADD TR 60-144, Metals Research Labs., Union Carbide Company (May 1960). UNCLASSIFIED UNCLASSIFIED The variation of the thormal component of the yield strass, v. with temperature for the Groups VA and VIA body contered cubic transition metals has been determined from the data reported in Hospanies. B was found that the temperature dependence of v. is relatively independent of structure for a parity of < 90, 90% by veight, and for tagle crystals as compared to polycrytails, and for single crystals as compared to polycrytails, in agreement with what had previously been found for irro. Assumes Corporation, El Segundo, California. CORRELATION OF THE THERMAL COMPONENT CUBIC METALS STREES OF BODY CENTERED CUBIC METALS. Propared by H. Coursel and W. Hayes, Mesorials Sciences Laboratory. 22 Probumy 1943. [34] p. lest. Illus. [Ropert TDR-1643240-11] TH-3; SED-TDR-63-28) [Course: AF 94(699)-169] Unclassified report UNCLASSIFIED UNCLASSITIED The variation of the thormal component of the yield street, r', with temperature for the Groupe V. and V.I. budy content order transition metals has been determined from the date reported in Hornture. B was found that the temperature of the is relatively independent of structure for a parity of < 19. 1915 by weight, but may become of the higher purity washerial and for single crystals as compared to polycrythals, in agreement with what had previously been found for item. Astropace Corporation, El Baymato, California. CORRELATION OF THE THERMAL CONTROLOGENT OF THE THEMS OF BODY CERTERED CUBIC METALS. Frequent by H. Court and W. Hayes, Materials Eciocos Laboratory. 22 February 185. [34] p. incl. libra. 22 February 185. [34] p. incl. libra. (Report TDR-164)3240-11]TH-3: SED-TDR-43-28) (Contract AF 04(695)-169) Unchassified report Assespace Corporation, El Seguado, California. CORRELATION OF THE THERMAL COMPONENT OF THE YIELD STREES OF BODY CENTERED CUBIC METALLS. Propared by H. Courad and W. Hayes, Materials Sciences Laboratory. 22 Peternary 1945. [146] p. incl. illias. [Report TDR-169(3240-11)TN-3; SED-TDR-63-28) (Couract AF 04(699)-169) Unclassified report UNCLASSINED UNCLASSIFIED The variation of the thermal component of the yield extress, v*, with temperature for the Groupe V, and VIA body contered cubic transition metals has been determined from the data reported in literature. It was found that the temperature depandence of v* is relatively independent of structure for a parity of < 99.99% by weight, but may decrease for higher parity material and for single crystals as compared to polycrystals, in agreement with what had previously been found for iton. (Over) UNCLASSIFIED (over) UNCLASSITIED | | n m o m o m o m o m o m o m o m o m o m | | |--------------|--|--| | | | | | UNCLASSIFIED | | | | | By plotting r ² versus the parameter (I - I ₂)/Im. it was possible to correlate the data for all the b. c. c. transition metals. I is the test temperature ture, I ₂ the temperature where r ² is first sero, and Im the melting temperature. The present results support thermally-activated overcoming of the Peterla-Nabarro stress as the mechanism responsible for the strong temperature dependence of the yield stress in the b.c. c metals. | | | By plotting τ^0 versus the parameter (I - I _O)/I _m , it was possible to correlate the data for all the b.c.c. transition metals. I is the test temperature ture, I _O the temperature where τ^0 is first zero, and I _m the melting temperature. The present results support thermally-activated overcoming of the Peierls-Nabarro stress as the mechanism responsible for the strong temperature dependence of the yield stress in the b.c.c. metals. | | |---|--| UNCLASKIFIED UNCLASSIFIED UNCLASSIFIED | UNCLASSIFIED | | |--------------|---| | | By plotting τ^0 versus the parameter (I - T_0)/ T_m , it was possible to correlate the data for all the b. c. c. transition metals. I is the test temperature, tars, T_0 the temperature where τ^0 is first sero, and T_m the melting temperature. The present results support thermally-activated overcoming of the Peierle-Maharro etress as the mechanism responsible for the strong temperature dependence of the yield stress in the b. c. c. metals. | | UNCLASSIFIED | | UNCLASSUFIED | |--------------|--|--------------| | | By plotting 1 st versus the parameter (I - I _O)/I _m , it was possible to correlate the data for all the b.c.c. transition metals. I is the test temperature, I _O the temperature where T is first sero, and I _m the melting temperature. The present results support thermally-activated overcoming of the Peierla-Nabarro stress as the mechanism responsible for the strong temperature dependence of the yield stress in the b.c.c. metals. | | UNCLASSIFIED